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A microscopic derivation using the average Maxwell electric field is given for 
fluctuation formulas for the dielectric constant of a simulation sample for both 
periodic and reaction field boundary conditions. The reaction field case is for a 
spherical cavity reaction field. The derivations put both boundary conditions on 
an equal footing of microscopic theory and the only nonrigorous part of the 
derivation is the assumption that the region used to average the electric field is 
large enough. The fluctuation formula for reaction field boundary conditions is 
rather different from that used heretofore. The method is applied to a subregion 
of an isolated spherical system. 
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1. I N T R O D U C T I O N  

Much confusion exists in the literature over the precise status of various 
boundary conditions that can be applied to the electrostatic interactions 
between the particles of a finite simulation sample of a polar fluid. The two 
most popular forms of boundary conditions are periodic boundary con- 
ditions and reaction field boundary conditions. Periodic boundary con- 
ditions have been condemned for introducing artificial long-range dipole- 
dipole correlations into the system tl,2) and methods of implementing them 
have been improperly understood. (31 Reaction field boundary conditions, 
because they surround the sample with a continuous dielectric medium of 
dielectric constant not equal to that of the system, may also be criticized 
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for inducing physically inappropriate long-range dipole-dipole correlations. 
The point of this paper is to show that these criticisms are irrelevant to the 
calculation of static dielectric constants, by deriving a fluctuation formula 
for the dielectric constant from the Hamiltonian (plus boundary con- 
ditions) for the system. Along the way it is possible to clear up some mis- 
conceptions in standard derivations. The theory assumes only that the 
simulation sample is large enough. 

For  a polar system the dielectric constant is the constant e in the 
equation 

~ E A v  = EAV A- 47ZpA v ( 1 ) 

where PAy is the average polarization density in some region f2 and EAV is 
the average of the microscopic electric field over that region. The 
polarization that is averaged to give PAy is that resulting from applying an 
external constant electric field eo to a system of which f2 is a subregion. The 
electric field that is averaged is the sum of eo plus the electric field at the 
point concerned due to all the dipoles in the system. To obtain e as a 
property of the bulk material, it is first necessary to let the system become 
infinite and then, after this limit is taken, to let the region t2 become 
infinite. 

In a simulation sample, which is necessarily finite, such careful 
juggling of limiting processes is obviously not possible. Nevertheless, there 
is an electric field defined at any point in the system, and a polarization 
density. The definition of the electric field at a point r in a dipolar system of 
N molecules of dipole moment ttj at r j, 1 ~< j ~< N, is 

N 

E(r) = eo - ~ (laj" Vr:) Vr~,(r, rj; x) (2) 
j 1 

where ~,(r, rJ; x) is the solution of a Poisson equation with the boundary 
condition x applied. On the other hand, the electrostatic energy of the 
system is 

1 N N 
~ ([tj- Vrj)(lttk �9 Vrk) ~(rk, rj; x) -- eo - M (3) HEs(eo; x) = ~  

J = l  k - - I  

where 
N 

M = ( 4 t  
j = l  

is the net dipole moment of the system and eo is an constant applied exter- 
nal electric field. Thus, it is clear that once the Hamiltonian for the 
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simulation sample has been defined precisely, with the effects of elec- 
trostatic boundary conditions on the sample included, the electric field at a 
point r in the sample is also defined. 

In a simulation, the Hamiltonian may be conveniently written 

H(eo, x) = Hsm + H E S ( 0 ;  X )  - -  e o �9 M (5) 

for the boundary condition x, where HsR is the sum of all the short-ranged 
interactions between the molecules. The average polarization density 
(P(s of some subregion s [with volume V(s of the simulation 
cube of side L may be written 

(P(s - ~ d(1 ) . . .  ~ d(N) [M(Q)/V(s exp[ - fill(0; x) +fleo" M]  
d(1)" �9 �9 ~ d(N) exp[ - fill(O; x) + fie o �9 M ]  

(6) 

where 
N 

M(s ~ It/ (7) 
. /=  1 
r]~-O 

is the net dipole moment of the region f2. Equation (6) may be expanded in 
powers of %. The result can be written as 

4rc(P(s 

= 4rc(p(s q 

where 

9y?(s (M(s - (M(s )o;x} "eo 
+ O(e~) 

NU: 
(8) 

?(s = L3/V(s (9) 

y = 4~p#2/9kT (10) 

is a dimensionless measure of the strength of the dipolar interactions, and 
p = NIL 3 is the number density of particles in the system. Assuming that 
the system is not ferroelectric, so that (M(s  , we find that Eq. (6) 
reduces to 

4re (p(s = 3y7(s (M(s "M)o:xeo ~_ O(eo2) (11) 
Xv 2 

It is precisely this form for the average polarization in a system that must 
be related to the expectation of the electric field. Relation (11) is exact and 
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to calculate the dielectric constant in the thermodynamic limit, it must be 
studied first in the limit N ~ oo, L --, oo with N I L  3 = p kept fixed, and then 
(2 ~ oo. 

In a boundary condition x, the potential ~(r, rk; x) is a solution of 

V, 2 ~(r, rk ; x) = -4~6( r  - rk) (12) 

with the boundary condition x applied. The solution may be written in the 
form (4) 

1 
O(r, r~; x ) -  - -  + H(r, rk; x) (13) 

I r - r k l  

where H(r, rk ; x) is a continuously differentiable function of r and r k in the 
region on which the solution is sought. The electric field at a point r in his 
region, for a configuration C =  {IL r~,..., las., rN} of the molecules, is 

N 
E ( r ; x ) = e o -  ~ *  (ltl/-Vr) Vr~t(r, r/;x) (14) 

/=1 

where the asterisk on the sum means that the r r - r / ]  ~ part of tp(r, L; x) is 
omitted when r = r j .  In configuration C, the average electric field in a 
region s is given by 

1 
E(Q; x) = ~ f d3r E(r; x) 

vt~z) :n 
(15) 

Using (13) and (14), we obtain from this 

N 
E(f2; x) = eo - ~ g/'Vrs fe VrH(r, r.i; x) d3r 

]= 1 

N ._1 
- -  E (~ i"  Vri) Vr  ~ , . ,  d3r  

.j=l p" "J~ 
(~6) 

The first set of integrals in (16) may be simplified using Gauss' theorem in 
the form 

i Vrf ( r )  d3r = fa f (r )  fi(r) d2r (17) 
oQ ~2 

where fi(r) is the unit outward normal at r o the surface 8Q of 62. Gauss' 
theorem applies because H(r, rj; x) is continuously differentiable in r. The 
second set of integrals in (16) cannot be treated in this way immediately 
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because the integrand of each is singular at r = rj. Thus, a sphere Sa(j) of 
radius 6 is constructed around each rj. Then 

1 
fQ vr  Ir - rj------~ d3r 

1 =f~?l&(j) Vr~d3r-i-fs~(i)gr~_rjld3r ( 1 8 )  

The integrand in the second integral in (18) is ( r - r / ) / I r - r i t  3, so this 
second integral can be written using the substitution t = r - r j  as 

Jo dt sin 0 dO --~ dfb (sin 0 cos ~b, sin 0 sin ~b, cos 0) 

which is zero. The first integral in (18) has a continuously differentiable 
integrand and so may be written using (17) as 

I ~ 1  fi(r) d2r-f~ ---L--1 fi(r) d2r (19) 
Ir rjl ,s~(jl i r - r j [  

The integral over 8 S e ( j )  may now be u r ~tten as 

8 j sin 0 dO de,  cos ~b, sin 0 sin ~b, cos 0) 
0 -re 

which is also zero. Thus 

ff2v r 1 1 d3r = f,~o Ir - r/--T fi(r) d2r (20) 

This rather labored calculation seems necessary since it is sometimes [e.g., 
Ref. 5, Eq. (8.3D)] carried out wrongly. This analysis gives 

N 
E(g2; x) = eo - ~ (Ix/'. V~j) J~ q/(r, rJ; x) fi(r) d3r (21) 

j= i "8~ 

2. P E R I O D I C  B O U N D A R Y  C O N D I T I O N S  

The periodic boundary conditions (PBC) used here are those 
introduced by de Leeuw et al. (61 The cubic simulation cell of side L is 
replicated to make a large sphere of periodic copies, with the region 
exterior to the sphere being a dielectric continuum of dielectric constant e'. 



184 Perram and Smith 

The sphere of copies has radius R and may be called S(R). The relevant 
Poisson equation is then 

V20(r,r  k ; P B C , e ' ) = - 4 z c  ~ 6( r - - rk- -Ln)  (22) 
L n  E S ( R )  

with the usual electrostatic conditions applying at the sphere surface. 
For R large but finite, an expansion for the solution may be developed 

in inverse powers of R, ~7"8~ and in the limit R-~ ve the solution in the 
original simulation cell is 

where 

O(r, rk; PBC, e ' ) = s  @PER 
472 

+ L3(2e,+ 1) r . rk  (23) 

=S" erfc(c~ in + rl) 

+ 2 exp(-n2mZ/e:)  
nm 2 exp(272im �9 r) (24) 

m4=0 

is a periodic function of period 1 in each of the components of r. The two 
sums in (24) over all vectors with integer components are absolutely con- 
vergent for c~ > 0, so that 0PER(r) is properly defined. This correct solution 
to the potential-theory problem in these boundary conditions cannot be 
derived from a Fourier transform of the solution of an infinite system. The 
representation (13) for this potential may be obtained by noting that the 
n = 0 term of I]/PER(r ) gives a contribution 

1/lr - r~l - erf(ct ]r - r~l/L)/I (r - r~)l 

to 0(r, rk; PBC, e'). It is sensible to use the simulation cell (SC) as the 
averaging region. 

This gives 
472 M 

E(SC; PBC, ') = eo 2e' + 1 L 3 (25) 

since the surface integral over the simulation cell surface of 
L-lfi~gPER((r--r~)/L) [cf. Eq. (21)] is zero because the contributions of 
opposite plane surfaces of the cell cancel by the periodicity. If the canonical 
expectation of both sides of Eq. (25) is taken, the result 

(E(SC; PBC, a'))e0;vBc,~'-% 2e' +~ 472(p(SC))~~ (26) 
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is obtained. Using Eq. (11), it follows that 

4~z(p(SC))eo:pBc,~, = 3y (M2)0;PBC'c' (27) N/---g eo 

Using the assumption that the simulation cell is large enough to iden- 
tify the average electric field in (26) with the EAv of Eq. (1) then gives 

2 
( ~ - l ) ( 2 e ' + l )  3 y ( M  )o;eBc.~' (28) 

2c' + e N# 2 

a result originally derived be a semimacroscopic argument by de Leeuw et 
a[. t6) The only assumptions used in this derivation are that the ther- 
modynamic limit of e in (PBC, e') geometry is the same as for free space 
geometry, and that the sample SC is large enough to make the iden- 
tification of (E(SC; PBC, c'))eo;PBC.~, with EAV. 

3. REACTION FIELD B O U N D A R Y  C O N D I T I O N S  

In reaction field boundary conditions, the energy of (or forces on) a 
dipole !aj at rJ can be calculated by surrounding the dipole with a sphere of 
radius R,  with center at r j, filling the region exterior to the sphere with a 
dielectric continuum of dielectric constant e' and ignoring the interaction of 
dipoles 1% at rk for which I r -  rx] > Rc. The relevant Poisson equation is 

Vr2@(r, rk; RK R,., e') 

[ - -47zS(r - rk)  if ]rjk ] ~ R ,  
(29) (o if ]rjk{ > R,. 

with the usual electrostatic boundary conditions at [rl = R,. The solution 
to this electrostatic problem is found by taking spherical coordinates along 
rjk and is 

~,(r, r~; RF, R,., e') 

1 

rr-rA R,  ( l+ l )~ '+  l / = 0  

if Ir~/] ~<Rc 

0 if Irkjl >R,. 

(30) 
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For point dipoles, the dipole interaction is 

~b(j,  k; RF, R,., e') 

ltti" 

0 

ir/ki3 "~k 

if Ir./~l ~<i, 

if Irj~l >R~ 

2(~' - 1 ) 
R~(2a' + 1 ) ~t/- ~t k 

(31) 

The singular part of this potential [cf. Eq. (13)3 is obvious. The problem of 
averaging the electric field in this case is a little more complicated than in 
(PBC, e') boundary conditions. The field must be averaged in each sphere 
and the result averaged over the spheres. In the sphere S(R,,  j) about r/, 
Eqs. (21) and (30) give 

E(S(R,, j); RF, R,,, ~')=eo 
I 

2e '+  1 47zp(S(R,, j))  (32) 

where in configuration C, p(S(R, , j ) )  is the polarization density in the 
sphere of radius R,, center rJ, namely 

N 

p(S(R,,j))= ~ ~t~/V(R,,j) (33) 
k = l  

Ira/] ~< R, 

The canonical expectation of Eq. (32) then gives 

(E(S(R,., j); RF, R,., e'))~o:RV.e,., :, 

1 
- -  4rt(p(S(R,,  J)))eo:RV,R,.~:' (34) - eo 2e' + 1 

At the same time, Eq. (11) gives 

4rc(p(S(R,, j)) )eo:RV.R,.~/ 

(M(S(R,.,  j))" M )O,RV,R,, 
= 3yT(X(R, , j)) N/~2 

with 

t 

eo (35) 

7(S(R,., j))  = 3L3/4rtR~ (36) 
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The relations may be averaged over j. Defining 

Z 
" =  k = l  

Irkjl ~< Rc 

(37) 

3L 3 (M(R,) 'M)o;Rv,  R,,~,, 
4rip(R, ) = 3y 4nR~ N/~ 2 eo (38) 

and E as the average of the field on the left side of Eq. (34) gives 

1 
g = e0 p(R,)  (39) 

28'1+ 

On the assumption that R~. is large enough, and using its largest possible 
value, L/2, the identification of [; with EAV gives, from 

( e -  1)(2e'+ 1) 6 (M(R,)'M)o;Rv~R,,~, 
= 3y (40) 

2~' + ~ n N/~ 2 

This fluctuation formula is similar to that used in recent studies using 
the reaction field, ~5'9'~~ but with a significant difference. Here the fluc- 
tuation quantity is ( M ( R , . ) - M )  and not ( M  2) or (M(R,.) :) .  Patey et 
a/. (1~ have shown that results for e using ( M  2) can be quite different from 
results using (M(R~.) 2), with volume scaling properly accounted for. Thus, 
the correct formula (40) for (RF, R,., ~') boundary conditions will give yet 
a third answer, but perhaps one that can be better trusted. 

4. ISOLATED SPHERE B O U N D A R Y  C O N D I T I O N  

Some recent work by Hesse-Bezot et al. (21 and Levesque and Weis (~1) 
treated a large set of dipoles confined to a sphere S(R) of radius R with a 
Lennard-Jones potential at the sphere boundary to contain the particles. 
They considered spherical subregions S(R~, r0), with center r0, radius R~, 
to carry out averages over the field. These spheres were entirely within 
S(R). To obtain more reliable statistical estimates, they in fact averaged the 
result over r0. 

The relevant Poisson equation in this case is 

V~0(r, rk; 0) = - 4 n S ( r -  rk) (41) 

with the boundary condition 0 --, 0 as [rl ~ oo. The solution is then 

@(r, rk; 0) = 1 / I r -  r~l (42) 
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The dipole dipole interaction is then the standard free space one. Inserting 
(42) in (21) gives for the average electric field in S(R., r0) 

4~ R E(S(R., ro); 0 )=  e o - - ~ - p ( S ( . ,  %)) 

'~ It/ (43) 
- 2 [I - 3f/.of/,o] " irjol3 

/ =  I 
rl r s(  R,,, r 0 ) 

where r/,o = r / - r o -  It may now be noted that 

(M(S(R. ,  ro)" M )o:o 
4rc(p(S(R~,ro)))eo.o=3yT(S(R~,ro)) N~t2 eo (44) 

where 
7(S(R., ro)) = R3/R3. (45) 

The canonical expectation of (43) is not easy to evaluate. The third term 
on the right-hand side is replaced by assuming the region outside S(Ra, ro) 
to be a dielectric continuum of dielectric constant e, which responds to the 
net dipole moment of the region S(R~, ro) and thereby contributes to the 
electric field in that region. This assumption then gives 

( e -  1)[(~ + 2)(26 + 1)-2(R~]R)3(1 _~)2] 

3c(~ + 2) 

(M(R~)" M)o;o 
= 3yT(S(R,, r0)) N~ 2 (46) 

where M(R,)  is an average of M(S(R, ,  %)) over a range of values ro. The 
expectation on the right-hand side of (46) is not precisely that used. ~2't~ 
More important is the assumption that the external region can be treated 
as a uniform continuum. The geometry may also be implemented with the 
spherical sample immersed in a dielectric continuum of dielectric constant 
z', with appropriate changes to the left-hand side of (46) and a reaction 
field term in the Hamiltonian. The derivation of a fluctuation formula is 
interesting, since it does not really assume that z is independent of boun- 
dary conditions in the thermodynamic limit. The boundary condition used 
is the physically observed one. It does make the same assumption that the 
derivations in other boundary conditions make, that the averaging region 
chosen will be large enough. Also, this fluctuation formula makes an 
explicit extra assumption about the behavior of those dipoles exterior to 
the averaging region. Without further analysis, the status of the fluctuation 
formula (46) must remain unresolved. 
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5. D I S C U S S I O N  

The derivations of fluctuation formulas here are useful in tha they 
make quite clear what violence is being done to the electrostatics of an 
infinite, isolated system when a particular boundary condition is used to 
model it. The fluctuation formulas for periodic boundary conditions and 
reaction field boundary conditions [Eqs. (8) and (40), respectively] have 
exactly the same microscopic theoretical basis. The only question as to 
their viability as reliable ways of calculating dielectric constants is whether 
the system is large enough. That is a matter for simulation experiment. 

The basis for the fluctuation formula for the isolated spherical system 
is not so sound, for while no violence at all is done to the electrostatic 
interactions in calculating the configurations, a specific semimacroscopic 
model is used in interpreting the fluctuations. This inconsistency between 
the Hamiltonian and the fluctuation formula does not occur in periodic 
boundary conditions or reaction field boundary conditions. 

The rosy picture of an equivalent theoretical basis for both periodic 
and reaction field boundary conditions should not be allowed to obscure 
several rather difficult problems with reaction field boundary conditions. 
First, because of the spherical cutoff in the dipole dipole interaction, a 
molecular dynamics simulation will not conserve energy. The kinetic energy 
must be regularly rescaled. This can have unknown effects on the resulting 
averages. Neumann e ta[ .  (9) have tried using a cubic cutoff and included the 
reaction field in the inside of the corresponding cube. However, this reac- 
tion field can only be evaluated approximately, Adams and Adams (12) have 
shown that dielectric constant estimates can be very sensitive to small 
changes in the reaction field potential, so that the approximate cubic reac- 
tion boundary condition may not be entirely reliable. A second difficulty 
arises when systems of molecules carrying charge distributions with a net 
dipole moment are to be studied. Here terms from all values of l in the 
series (30) for O(r, r , ;  RF, R,, e') contribute to the Hamiltonian. It is not 
at all clear that the resulting simulation will be any easier or faster to 
implement than a periodic boundary condition simulation, where fast, 
reliable numerical techniques are available. Finally, with such molecular 
systems a molecule may be partly inside the cutoff sphere and partly out- 
side, which will lead to rather unphysical interactions near the cutoff. 
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